热敏电阻的基本特性:热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(ºC)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,较大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。热敏电阻的材料常常是多种化合物的混合物。常州微波炉热敏电阻厂商

热敏电阻也可作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专门的检测元件。PTC热敏电阻主要用于电器设备的过热保护、无触点继电器、恒温、自动增益控制、电机启动、时间延迟、彩色电视自动消磁、火灾报警和温度补偿等方面。常州微波炉热敏电阻厂商当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。

金属热敏电阻材料:此类材料作为热电阻测温、限流器以及自动恒温加热元件均有较为普遍的应用。如铂电阻温度计、镍电阻温度计、铜电阻温度计等。其中铂测温传感器在各种介质中(包括腐蚀性介质),表现出明显的高精度和高稳定的特征。但是,由于铂的稀缺和价格昂贵而使它们的普遍应用受到一定的限制。铜测温传感器较便宜,但在腐蚀性介质中长期使用,可导致静态特性与阻值发生明显变化。较近有资料报导,铜测温传感器可在空气介质中-60~180℃温度范围使用。但是,国外为了在-60~180℃长期地测量温度和在250℃短期测量温度,普遍大量使用着镍测温传感器,并认为镍是一种较理想的材料,因为它们具有高的灵敏度、满意的重现性和稳定性。
负温度系数热敏电阻的工作原理:NTC泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻就是负温度系数热敏电阻。负温度系数热敏电阻是以氧化锰、氧化钻、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,完全类似于储、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。NTC热敏电阻在室温下的变化范围在100~100000,Ω温度系数为一2%6.5%。负温度系数热敏电阻类型很多,按温度范围分为低温(-60~300℃)、中温(300-600℃、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,普遍应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。热敏电阻的保护作用体现在控制温度在安全范围内,防止电路过热。

如何使用NTC热敏电阻?NTC热敏电阻可用于交流线路或与桥式整流器的直流输出一起使用,以抑制启动浪涌电流。当电源开关接通时,NTC热敏电阻处于冷态,电阻值较大,可以抑制流过电阻体浪涌脉冲电流,在浪涌电流和工作电流的共同作用下,NTC热敏电阻器的温度会因负温度系数而升高,温度会升高,电阻会急剧下降。在稳态负载电流下,其电阻值会很小,对电流的限制作用很小,功耗很低,不会影响整个电源的效率。因此,当具有恒定电子功率的NTC热敏电阻用在同一电路电源中时,可以抑制浪涌电流。热敏电阻通常具有非线性的电阻-温度特性。扬州MF72热敏电阻制造商
热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。常州微波炉热敏电阻厂商
热敏电阻的作用之过热保护:过热保护分直接保护利间接保护。对小电流场合,可把热敏电阻传感器直接串人负载中,防止过热损坏以保护器件,对大电流场合,可用于对继电器、晶体管电路等的保护。例如,在电动机的定子绕组中嵌入突变型热敏电阻传感器并与继电器串联,当电动机过载时,定子电流增大,引起发热。当温度大于突变点时,电路中的电流可以内十分之几毫安突变为几十毫安,因此继电器动作,从而实现过热保护。热敏电阻的作用之液面测量:给NTC热敏电阻传感器施加一定的加热电流,它的表面温度将高于周围的空气温度,此时它的阻值较小。当液而高于它的安装高度时,液体将带走它的热量,使之温度下降、阻值升高。判断它的阻值变化,就可以知道液面是否低于设定值。汽车油箱中的油位报警传感器就是利用以上原理制作的。常州微波炉热敏电阻厂商